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1. Introduction
Transport and deposition of colloidal particles in saturated porous media is of great importance in
many fields of science and engineering. On the one hand, mobile subsurface colloids have received
considerable attention due to their potential risk for human health since natural colloids can act as a
carrier for a wide range of harmful contaminants by strong absorption, thus extremely facilitating their
migration in the subsurface. On the other hand, study of colloids is related to the development of new
remediation technologies. Prediction of transport and fate of colloidal particles in the subsurface
environment requires a thorough understanding of particle filtration processes. Mechanisms that
control the mobility of reactive nano- (and micro-) particles determine the design, implementation, and
performance evaluation of remediation field applications [80].
For engineering applications, particle transport and deposition are the basis of deep-bed granular

filtration, commonly adopted in water and wastewater treatment and industrial separation processes
[81]. Particle removal efficiency and head loss across the packed bed depend on a number of
parameters, including suspension properties (e.g., particle size distribution and concentration, particle
surface chemistry, and solution chemistry), filter design parameters (e.g., media size, type, and depth),
and operating conditions (e.g., filtration rate and filter runtime) [18]. Even though empirical or
semiempirical approaches are available for the design of filters in many industrial applications, several
aspects related to colloid retention mechanisms are still not fully understood.
Another application of colloid filtration processes is in the field of petroleum engineering, where

fine migration and clogging in the vicinity of the production wells may be a critical issue for well
efficiency and oil or gas production [92].
Colloid transport is a peculiar multiscale problem where pore-scale phenomena have an important

impact on the transport at larger scales. Particles migrating through a porous medium may remain in
the solution phase and be transported due to the advection and dispersion processes or be retained due
to the filtration (when particle size exceeds the pore size or particle is entrapped in the dead-end pores)
and deposition onto the porous matrix (a phenomenon controlled by physicochemical particlee
particle and particleeporous medium interactions). In the past few decades, there has been a very large
increase in the use of pore-scale modeling to study (multiphase) flow and (reactive) transport in porous
media [6] to gain a better understanding of the mechanisms underlying colloidal deposition and
aggregation by studying the intergranular dynamics [22].
The complex and random arrangement of soil grains, which determines the hydrodynamics of the

system, is very difficult, if not impossible, to be described in detail in a mathematical framework at this
time. This problem, related to the complexity of the system, can be approached in two different ways [18]:

• The physical system can be approximated crudely enough assuming that an exact mathematical
solution to the problem is obtainable (analytical solution).

• A more accurate representation of the system can be used, which would require an approximate,
numerical, solution.

For larger domain sizes (e.g., laboratory-scale colloid transport), the solution of flow and transport
equations within each individual pore is not feasible, and up-scaled continuum averaged equations are
to be utilized. However, for solving large-scale problems (e.g., multidimensional representation of
field-scale processes), continuum-scale modeling approaches are still under development, and
up-scaled kinetics, based on the underlying pore-scale processes, are still missing.
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Two major theoretical methods are available to simulate colloid transport and to calculate the
particle deposition rate onto the porous medium, namely, Lagrangian and Eulerian approaches.
Lagrangian methods describe the trajectory of the particle as it comes near the collector surface,
whereas Eulerian ones describe the evolution of particle concentration in time and space [21]. The
Lagrangian approach is therefore suitable for the representation of the trajectory of individual particles
at a microscopic level [22]. Conversely, the Eulerian method describes the particles collectively, in
terms of their distribution or probability density function, in time and space, and is consequently a
typical macroscopic approach [22,81,91].
Even though the Lagrangian approach is, in principle, capable of dealing with Brownian particles,

it has been typically used to describe non-Brownian particles motion because their trajectories are
deterministic and easier to express analytically. The representation of Brownian motion requires
addition of a thermal random force in the equation of motion, leading to a Langevin’s form equation,
the solution of which results in stochastic trajectories [11,21]. The solution of such equations requires
laborious and time-consuming integration of the stochastic equation of motion [22] and is in practice
only feasible for a limited number of particles from a practical point of view.
Eulerian methods have been the most widely employed approach for describing transport and

deposition phenomena at larger scales. Using Eulerian methods, the difficulty of accounting for
Brownian effects is eliminated, and these methods are more amenable to numerical or approximate
analytical solutions [21]. For this reason, the Lagrangian approach was less attractive than the Eulerian
approach, especially before the widespread availability of high-performance computers.
This review on pore-scale modeling covers five main topics: (1) techniques to mimic the soil

structure, (2) hydrodynamics of the porous medium, (3) particle transport mechanics, (4) particlee
particle and particleeporous medium interactions, and (5) up-scaling from pore scale to macroscale.
We begin by introducing the methods to represent the pore structure, at different levels of simplifi-
cations. Fluid flow solutions are then discussed, focusing in particular on laminar and Newtonian flow,
which is the condition encountered in the majority of applications of particle transport problems
(especially for subsurface water flow). Finally, different approaches developed to represent and
quantify particle transport and deposition in porous media are presented and discussed, highlighting
possible critical points and aspects, which need to be further elucidated. Finally, we briefly discuss
up-scaling approaches based on pore-scale processes, appropriate to be used in macroscale modeling.

2. Pore-scale modeling
2.1 Pore space representation
At the pore scale, the solid phase of the porous medium is represented as an assembly of grains (i.e.,
collectors), whose structure, geometry, and size distribution must be known in detail [78]. The
geometry of the collectors can be simplified (e.g., as spheres), or realistic, directly obtained from
imaging of a real sample (for example, a packed sand sample). Single grain or multiple packed grains
(multiple collectors) can be considered in both two and three dimensions. An overview of the
commonly adopted geometric representations is given in Fig. 13.1. The simplest representation of a
single collector is a sphere, which is typically studied as a circle in 2D, by exploiting the radial
symmetry of the collector. To explore the influences of grain shape (sphericity) and surface roughness,
nonspherical collectors have been also considered [12,73]. Several configurations have been proposed
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to take into account the impact of grain-to-grain contacts and pore space configuration on particle
transport and retention, namely, the hemispheres-in-cell model, which incorporates grain-to-grain
contact [49]; the simple cubic packing and dense cubic packing [16,17,36]; the sinusoidal constricted
tube accounting for the geometry nature of the pores; and the impact of constricted passages [88].
At a larger scale, when several packed collectors are considered, synthetic 2D or 3D geometries

usually adopt an assembly of irregular (realistic) grains [8] or circles (or spheres) arranged in a regular
pattern [18] or randomly packed [15,35,67]. Another approach is pore network modeling, in which
several pores are connected using capillary channels to represent the void space. In the simplest case,
pores are located at a regular lattice, whereas in more complex pore network models, a large variety of
irregular networks can be selected [5,24,47].

2.1.1 Realistic pore-scale geometries
Realistic representations of the pore space geometry in both 2D and 3D are less common at the
moment, compared with regular structures of packed spheres, since they require significantly higher
computational costs, and the reconstruction of the pore space requires specific algorithms. The
geometric characteristics of pores and their position can be chosen randomly from prescribed distri-
butions or alternatively selected to match experimentally determined pore space geometries [9,52].
In some recent works employing this methodology, a code performing rigid body dynamics [9,63]

or discrete element method simulations [75] is used to generate a realistic packing by reproducing the
gravitational settling of a sufficient number of arbitrarily shaped solid grains; the interaction param-
eters (e.g., elastic restitution coefficient, friction factor) are specified to obtain experimental values of
porosity for the considered packing.
Then, having obtained this in silico porous media model, this geometrical representation is then

passed to a computational fluid dynamics (CFD) code solving the appropriate physical equations to be
studied.
Alternatively, the structure of a granular media can be obtained by carrying out image analyses of

real samples. For 2D domains, SEM images of grains can be used [80], and 3D digital images can be
obtained from high-resolution three-dimensional X-ray tomography or NMR tomography experiments
[1,61].

2.1.2 Pore-network models
Traditionally, approaches based on pore-network models have been one of the most common pore-scale
modeling methods. Pore-network models require extensive preprocessing (network extraction) to
discretize the imaged irregular pore space into simple pore elements (mostly represented as pore bodies
and pore throats). To mimic realistic porousmedia processes, network models should reproduce the main
morphological and topological features of real porous media (Fig. 13.2). These should include pore-size
distribution and pore coordination number and connectivity. The coordination number, defined as the
total number of pore throats (capillary channels) that connect a given pore to its adjacent ones, has a wide
range of variation number in natural porous media. To generate pore spaces with defined pore
connectivities, Raoof and Hassanizadeh [70] have developed a multidirectional pore-network approach
for representing a porous medium, which allows for a wide range of coordination numbers.
Each representation of the pore space corresponds to a different degree of simplification and,

consequently, requires different assumptions when solving flow and transport equations. In the
following section, an overview of the major approaches is provided and discussed.
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2.2 Flow field description
Studying colloid transport, it is commonly assumed that flow and colloid transport are not coupled
processes (i.e., the presence of colloidal particles does not affect the flow field, due to the usually low
Stokes number). As a consequence, a quantitative description of the undisturbed flow field is an
essential prerequisite to the solution of the transport problem [22].
As a general rule, the flow behavior of the carrier fluid is described by mass and momentum

conservation equations, usually written in the differential form [25]. The equations can be closed and
simplified using approximations and assumptions on the nature of the fluid considered. The most
common assumption consists in incompressible and Newtonian fluid [22,25]. In this case, the conti-
nuity equation and the NaviereStokes equations are [22]:

V $ v ¼ 0 (13.1)

vv

vt
þ v,Vv ¼ �Vp

r
þ m
r
V2vþ f e (13.2)

where m is the constant (dynamic) viscosity, v is the fluid velocity (vector), P is the hydrostatic
pressure, and fe represents the external forces exerted on a unit mass of the fluid. In most cases, a steady
state is assumed, and the external forces are neglected, thus leading to the following dimensionless
formulation of Eq. (13.2):

NReev ,Vev ¼ �Vepþ V2ev (13.3)

where

ev¼ v
U0
; ep ¼ pL0

mU0
; NRe ¼ rL0U0

m
(13.4)

where ev and ep are the normalized (dimensionless) velocity vector and fluid pressure. NRe is the
Reynolds number and describes the ratio of inertial forces (linear term ev,Vev) to the viscous one

FIGURE 13.2

Pore spaces within a soil matrix, and discretization into spheres (i.e., pore bodies) and capillary tubes (i.e.,

pore throats), representing the continuum space that the groundwater moves through at the small scale.
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(nonlinear term V2ev) [22,25]. The lower the NRe is, the closer the momentum equation is to a linear
equation (Stokes equation), and laminar flow is retrieved; the higher the NRe is, the more important are
the nonlinear terms (NaviereStokes equation), thus leading to turbulent flow. The value of the
Reynolds number, and hence the flow regime, is determined by the characteristic length scale and
reference velocity. Thus, although a suspension flowing through a pipe at high speed may be turbulent,
the local flow field around each suspended particle may still be laminar.
For NRe << 1, under steady-state conditions and neglecting external forces, the Stokes or creeping

flow equation is obtained:

V2v¼ 1
m
Vp (13.5)

which is of importance to analyze flow containing small particles (suspensions) and flow-through
porous media and narrow passages [25]. Eq. (13.5) has the advantage of being a linear differential
equation, so the superposition technique can be employed to decompose complex flow field into
simpler ones [22].
Experience shows that Stokes and NaviereStokes equations describe the flow of a Newtonian fluid

accurately, but, only in few cases and in very simple geometries, it is possible to obtain an exact,
analytical solution (e.g., flow around an isolated sphere) [21,78]. In other cases, an analytical solution
can be still retrieved, but under simplifying assumptions, acceptable under a restrictive number of
hypotheses [25]. However, in general, when simplifying assumptions required for analytical solutions
cannot be accepted, or when the pore space geometry is irregular and a detailed flow field is required, a
numerical solution can be obtained by performing CFD simulations. In these cases, a key aspect is the
selection of the discretization method, i.e., the method of approximating the differential equations by a
system of algebraic equations for the variable at some set of discrete locations in space and time. Many
approaches are available, whose detailed discussion is beyond the purpose of this study. However,
among the approaches more often adopted in the field of colloid transport, finite differences, finite
volumes, and finite elements methods are all worth being mentioned. Other methods, such as spectral
schemes, boundary element methods, and cellular automata, are employed in CFD, but their use is
limited to special problem categories [25].
In the following paragraphs the most commonly used approaches to the solution of the flow field in

pore-scale models are summarized. The section is not intended as an exhaustive and complete
description of all available models for pore-scale flow simulations, but it focuses specifically on those
approaches, which are most used for colloid transport simulations.

2.2.1 Flow past a single sphere
In many cases, a porous medium grain, called collector, may be approximated to a sphere, and the
granular medium is represented as a set of collectors, each of them behaving in a similar way. Under
such an assumption, spherical coordinates are adopted for a more efficient representation of the
domain. In some cases (e.g., isolated sphere, Happel’s, and Kuwabara’s models), a symmetry along the
vertical axis is assumed, and, consequently, the flow is solved in 2D (coordinates r and q, Fig. 13.3A
and B), whereas in other cases a full 3D domain is required (hemisphere-in-cell model, Fig. 13.3C).
The simplest model represents the grain as an isolated sphere in an infinite fluid domain, and each

grain in the porous medium is totally independent of the others. The flow field around the grain is
solved as the flow of fluid of infinite extent over a single sphere, under laminar flow conditions

2. Pore-scale modeling 357



(i.e., Stokes solution). If spherical coordinates with symmetry with respect to the vertical axis are
adopted (Fig. 13.3A), then the following boundary conditions can be imposed:

vr ¼ 0; vq ¼ 0; for r ¼ ac; (13.6)

vr/ � UN cos q; for r/N; (13.7)

vq/ � UN sin q for r/N: (13.8)

where r and q are the coordinates, vr and vq are the components of the fluid velocity along, respectively,
r and q, and UN is the modulus of the undisturbed (vertical) flow velocity.
An analytical solution can be derived for creeping flow (NRe << 1) [78]:

vr ¼ � UN cos q
�
1

2

a3c
r3
� 1
2

ac
r
þ 1
�
; (13.9)

vq¼ � UN sin q
�
� 1
4

a3c
r3
� 3
4

ac
r
þ 1
�
. (13.10)

where ac is the radius of the collector.
A set of single collector models, which also take into account possible modifications to the flow

field induced by the other grains, are the so-called sphere-in-cell models, among which Happel’s
model [30] is the most widely applied one [69,81]. The granular medium is represented as a collection
of identical cells consisting of a solid sphere of radius b surrounded by a fluid layer whose thickness b
is proportional to porosity n (Fig. 13.3B) as:

b¼ acð1� nÞ�
1
3 (13.11)

FIGURE 13.3

Schematic description of single sphere models for homogeneous porous media: (A) isolated sphere [21], (B)

Happel’s model [21], and (C) hemisphere-in-cell model. In (C), the blue planes represents the flow entry and

exit surfaces, and the purple region denotes the area in which colloids are randomly introduced [49].
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The flow field is usually solved by the use of stream functions [69].The equation of motion for the
creeping flow [69] is solved assuming symmetry around the vertical axis, and the following boundary
conditions are imposed [78]:

vr ¼ 0; vq ¼ 0; for r ¼ ac; (13.12)

vr/ � UN cos q; for r ¼ b; (13.13)

1

r

vvr
vq
þ r v
vr

�vq
r

�
¼ 0; for r ¼ b; (13.14)

Kuwabara’s model is identical to Happel’s model in conception and formulation but applies
different boundary conditions [31,41,78]:

vr ¼ 0; vq ¼ 0; for r ¼ ac; (13.15)

vr/ � UN cos q; for r ¼ b; (13.16)

vvq
vr
þ vq
r
� 1
r

vvr
vq
¼ 0 for r ¼ b; (13.17)

The hemisphere-in-cell model has been proposed as an extension and generalization of Happel’s
model to incorporate the effects of a grain-to-grain contact [49]. The spherical collector is represented
as a portion (a quarter) of a sphere, surrounded by a shell of fluid. Symmetry planes along the two
sections of the sphere and at the portion representing grain-to-grain contacts are applied (Fig. 13.3C).
Continuity and steady-state NaviereStokes equations under laminar flow assumption are solved in
spherical coordinates (i.e., r, q, and 4) by imposing the following boundary conditions [49]:

vr ¼ 0; vq ¼ 0; vf ¼ 0; for r ¼ ac; (13.18)

vr ¼UN cos q; for r ¼ b; (13.19)

vq¼UN
2
sin q

��4þ 3gþ 5g3 � 6g5 þ 2g6
2� 3g þ 3g5 � 2g6

�
; for r ¼ b; (13.20)

vf¼ 0; for r ¼ b; (13.21)

where 4 is the third spherical coordinate and g ¼ ð1� nÞ1=3 is a function of porosity.
No closed-form solution is available for this model, and the flow field is therefore solved

numerically [49].
It is also worth mentioning Brinkman’s model [14], another approach that couples the pore-scale

accurate solution of the flow field around a sphere with a large-scale, continuum solution of flow at
larger distances. In this case, the collector is represented again as a solid sphere of radius ac, embedded
in a granular mass. The flow field far from the collector is solved by applying the Darcy’s law, whereas,
close to the sphere surface, the NaviereStokes equation is applied under creeping flow conditions [78]:

Vp¼ � m
k
vþ mV2v (13.22)

where k is the permeability tensor.
Imposing the following boundary conditions:

v¼ 0 for r ¼ ac; (13.23)

v¼UN for r/N; (13.24)
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it is possible to recover the analytical formulation for both the components of the velocity vector, vr
and vq.
The above presented models, despite their differences, are all formulated on the assumption that a

relatively simple configuration can be used to represent randomly packed granular media, but due to
their simplicity, they only approximate realistic porous media [78].

2.2.2 Flow in pore-network models
In pore-network modeling, the relevant conservation laws are solved within each pore element [52].
Pore-network models have been used extensively to simulate multiphase and single-phase fluid flow in
porous media, and these models will continue to provide important insight and information in the
future. However, pore-network models are based on simplified pore geometries and, in the case of
multiphase fluid flow, simplified physics controlling transport of phase interfaces. In addition,
pore-network models are less suited for the simulation in fractured media, vuggy carbonates, or other
systems with the presence of complex macropores. More recently, a number of methods based more
firmly on first principles have been developed. These methods include lattice Boltzmann simulations,
particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics, and
computational fluid dynamics with fluidefluid interface tracking/capturing and velocity-dependent
contact angles. These methods are computationally less efficient than pore-network models, but the
sustained increases in the capability of computing systems are making them more and more attractive
[52].
After constructing the skeleton and the geometry of the pore network, it can be applied to model

fluid flow and reactive/adsorptive solute transport. Volumetric discharge, qij, through a given pore
throat (such as pore throat ij in Fig. 13.4), can be prescribed by the HagenePoiseuille equation [70]:

qij¼
pR4ij
8ml
ðPj�PiÞ (13.25)

FIGURE 13.4

An example of interconnected pore bodies and pore throats. Flow direction is from pore body j into pore body i

in tube ij. Node j is the upstream node.
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where Rij is the radius of the pore throat, and Pi and Pj are pressures at pore bodies i and j, respectively.
For incompressible, steady-state flow, the sum of discharges of pore throats connected to a pore body
must be zero: Xzi

j¼1
qij¼ 0 j ¼ 1; 2;.; zi (13.26)

where zi is the coordination number of pore body i. Eq. (13.26) is applied to all pore bodies except
those on the two flow boundaries where pressures are specified.
The system of Eqs. (13.25) and (13.26) for all pores results in a linear system having a sparse,

symmetric, positive-definite coefficient matrix to be solved for pore body pressures. The flow velocity
in all pore throats can be calculated using Eq. (13.25).
Considering the network domain as an REV (representative elementary volume), the average pore

water velocity, v, can be determined as:

v¼QL
Vf
¼ Q
nS

(13.27)

where Q is the total discharge through the network (the sum of fluxes through all pore throats at the
inlet or outlet boundary of the network), L is the network length in the flow direction, Vf is the total
fluid volume present in the network, n is porosity, and S is the cross-sectional area of the network
perpendicular to the overall flow direction.

2.3 Particle transport simulations at the pore scale
Transport of colloids can be studied using two main approaches: the Lagrangian method based on the
trajectory analysis of the individual particles [20,64], or the Eulerian method that describes the
evolution of particle concentration in time and space [21].
In the Lagrangian approach, the trajectory of a particle around a given collector is determined by

the various forces acting on it, which should be described in detail [22]. Flow and transport problems
are independent: The flow field around the collector is assumed undisturbed by the presence of the
colloidal particles and is obtained by analytical or numerical solutions of the Stokes or NaviereStokes
equation, as described in Section 2.2. The particle trajectory is obtained by solving the classical
Langevin’s equation, including a balance of all forces acting on the particle:

m
du

dt
¼Ftot (13.28)

wherem is the particle mass, u is the particle velocity vector, and the terms on the right-hand side of the
equation are the forces acting on the particle, Ftot. These forces include fluid drag (FD), gravity (FG),
electrostatic (FEDL), Van der Waals (FVdW), and Brownian forces (FB). Among these forces, FEDL and
FVdW only act on the particle in the normal direction relative to the collector surface.
The Eulerian approach is instead based on the solution of the convective diffusive equation:

vc

vt
þV$ðvcÞ ¼ V$ðDVcÞ � V$

�
D$F

kBT
c

�
(13.29)
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where v is local fluid velocity, c is the particle concentration, D is the particle diffusion tensor, kB is the
Boltzmann constant, T is the absolute temperature, and F is the external force vector that takes into
account the gravity force and interaction forces (e.g., Van der Waals forces and electric double layer
interactions). In this case, the Brownian force is implicitly considered in the diffusion tensor. Quite
often, D is considered as a scalar coefficient, normally evaluated with the StokeseEinstein’s
formulation:

D¼ kBT
6pmap

(13.30)

where T is the absolute temperature and ap is the particle radius.

2.3.1 Molecular simulation methods
Molecular simulation methods were traditionally employed first to numerically solve microscale
problems. Before the considerable improvement in high-performance computational methods, the
properties of a molecular substance could be predicted only with theories giving an approximate
description of a material. Conversely, when large-scale computational resources were made available,
numerical simulation of liquids was one of the first problems to be tackled [27], employing molecular
simulation methods.
Such methods operate at a microscopic level dealing with the constituent species of a system, from

which macroscopic and microscopic quantities of interest are estimated. The most popular methods are
the molecular dynamics (MD) and Monte Carlo (MC) methods. Furthermore, Brownian dynamics
(BD), dissipative particle dynamics (DPD), and lattice Boltzmann dynamics (LBD) methods are also
widely used, as they are powerful tools to simulate particle dispersion and share some features with the
molecular simulations methods.
The classical molecular dynamics methods can be employed to simulate a spherical particle

dispersion if only the translational motion is considered. However, the method can be applied also to
dispersions of nonspherical particles by including also rotational motion [3,2]. In case of spherical
particles, for a system of N interacting molecules (or particles), a set of equations expressing Newton’s
second law can be written, one for each molecule:

m
d2ri
dt2
¼Fi (13.31)

where i counts the molecules (or particles), t is time, ri is the position vector, and Fi represents the
forces acting on the i-th molecule and takes into account both external fields and the interactions
between molecules. The system can be solved transforming Eq. (13.31) into an algebraic equation,
approximating every component of the second-order differential term; employing a central difference
approximation (second-order accuracy), the Verlet method is obtained [83]. If also velocity equations
are solved simultaneously, the velocity Verlet method is obtained [77], which is significantly superior
with respect to the stability and accuracy of simulations.
Since the MD method makes use of the equation of motion, it is applicable to both thermodynamic

equilibrium and nonequilibrium phenomena. However, it is quite unfeasible for particle dispersion
simulations, since the characteristic times of the motion of the solvent molecules and dispersed
particles are considerably different.
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In contrast with the MD method, theMonte Carlo method does not use the equations of motion but
simulates phenomena in thermodynamic equilibrium, where the explicit time is not required. In
particular, for N interacting spherical particles, the MC method employs a stochastic law to generate a
series of microscopic states, determined by the position vectors ri. The microscopic states are
generated according to a probability function, which depends on the position vectors via the interaction
energy function U¼U(r1, r2, ., rN). Among the algorithms available in Monte Carlo methods, the
most successfully applied in colloid transport simulations is the Metropolis one [32,55], which can
deal with both spherical and nonspherical particles.
In the Brownian dynamics method, the motion of dispersed particles is taken into account,

considering the solvent molecules as a continuum medium, and the solvent influence is included into
the equation of motion of dispersed particles as random forces. In particular, when each spherical
particle can be regarded as moving independently, the motion is governed by the Langevin equation:

m
du

dt
¼F� xv þ FB (13.32)

where x is the friction factor coefficient x ¼ 6pmap, F are the external forces, and FB is the (Brownian)
random force. As in molecular dynamics methods, the Brownian motion Eq. (13.32) is solved
numerically by transforming it into a system of algebraic equations, approximating position and
velocity vectors.
The dissipative particle dynamics method is based on a mesoscopic model that allows to simul-

taneously simulate the motion of fluid and colloid particles: groups or clusters of solvent molecules are
seen as virtual particles (dissipative particles), to overcome the differences in characteristic times. This
method is particularly useful to take into account the multibody hydrodynamic interactions. In such a
frame, the governing equation is:

m
du

dt
¼
X
jsi

FCij þ
X
jsi

FDij þ
X
jsi

FRij (13.33)

where Fij
C are the conservative forces acting on particle i due to particle j, Fij

D are the dissipative forces
due to the exchange of momentum, and Fij

R are random forces. This method has been used to model a
wide variety of multiphase systems at the microscale, such as oilewater interfaces [85], adsorption of
surfactants on carbon nanotubes [84], and surfactant structures in solution [13].
The lattice Boltzmann dynamics (LBD) models the fluid as if consisting of fictive particles, which

perform consecutive propagation and collision processes over a discrete lattice mesh [56]. Usually, the
lattice mesh is identified by an acronym DnQm: It is obtained by superposition of a homogeneous
Cartesian mesh (D2 when we are in two dimensions) and a finite set of discrete particle velocities (nine
for the case of two-dimensional mesh, Q9). As opposed to classical MD methods dealing with
positions and velocities of fluid particles, LBD treats the velocity distribution function of particles at
each grid point over a discretized domain [74]; time is discretized as well. Fluid particles can collide
with each other, as they move according to a set of rules, which are designed in such a manner that the
governing continuity and the NaviereStokes equation are recovered. The collision model typically
used in LBD is the BhatnagareGrosseKrook model [4].
The LBM method is powerful in dealing with both single and multiphase flow problems, also in

complex geometries [44]. In most lattice Boltzmann models, the solid and fluid phases are represented
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by a set of lattice sites, and the interface is represented by the edges of lattice sites that separate
different phases [52]. Several studies are reported in the literature, which combine LB simulations and
pore structure characterization techniques to examine colloid transport in porous media [44]. Due to its
particulate nature and local dynamics, LBM has several advantages over other conventional CFD
methods, especially in dealing with complex boundaries, incorporating microscopic interactions, and
parallelization of the algorithm.

2.3.2 Pore-network models
After the introduction of pore-network modeling by Fatt [23], to calculate flow of fluids in pore
network, it has been further applied for transport of solutes and particles in porous media
[40,42,82,90,62]. Examples of the recent achievements on the pore-network modeling are to account
for relatively weak chemical interactions such as the van der Waals’ force, which is often neglected in
macroscale models [89], and to combine them with a multiphase flow method [7,26]. Pore-network
models are capable of simulating the interactions of nanoparticles, solvent, and soil grains at the
pore scale (i.e., applying local hydrogeochemical conditions and local grain surface chemistry
information).
Transport through the pore space is modeled applying mass balance equations for each element of

the network (i.e., pore bodies and throats). Using pore network modeling, each pore is considered as a
fully mixed domain. Therefore, a single concentration is assigned to each pore body or pore throat
[70]. For a given pore body (e.g., pore body i in Fig. 13.4), one may write the mass balance equation:

Vi
dci
dt
¼
XNin
j¼1
qijcij � Qici (13.34)

where ci is the average concentration of pore i, cij is the pore throat average concentration, Qi is the
total flux of fluid leaving the pore body, Vi is the volume of pore body, and Nin is the number of pore
throats flowing into pore body i. As the total water flux entering a pore body is equal to the flux leaving
it, we have:

Qi¼
XNin
j¼1
qij (13.35)

Note that, in Eq. (13.34), adsorption of solutes to the pore body walls is neglected. Adsorption of
the solutes to the walls of the pore throats is taken into account. The mass transport equation for a given
pore throat may be written as:

Vij
dcij
dt
¼ ��qij��cj � ��qij��cij � Vijkatt;ijcij þ Vijkdet;ijsij (13.36)

where Vij is the volume of the pore throat, qij denotes the volumetric flow within the tube, sij is the
average adsorbed concentration, and katt,ij and kdet,ij are attachment and detachment rate coefficients of
tube ij, respectively. The first term on the right-hand side of Eq. (13.36) accounts for the mass entering
from the upstream node j, and the second term is the mass leaving the pore throat into the downstream
pore body.
We also need an equation for the adsorbed mass concentration:

dsij
st
¼ katt;ijcij � kdet;ijsij. (13.37)
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Combining Eqs. (13.34) through (13.37) results in a linear set of equations to be solved solution
concentration as well as concentration of adsorbed mass. After obtaining the solution at each time step,
breakthrough curves (BTCs) at a given longitudinal position can be calculated by averaging the
concentrations of pores centered at that position. In calculating BTCs, the concentrations of pores can
be weighted by their volumetric flow rate, resulting in a flux-averaged concentration.

2.4 Mechanisms of particleeporous medium interactions
Deposition of particles from the bulk of the fluid to the collector surface may be viewed as a two-step
process: the transport of the particle from the suspension to the proximity of the surface, and the
particle’s subsequent adhesion to the surface, which depends on the nature of surfaceeparticle
interactions [78]. The transport of colloidal particles from the pore fluid to the vicinity of the collector
is typically described by three mechanisms: interception, gravitational sedimentation, and Brownian
diffusion [81]. Interception is a steric phenomenon and happens when a particle flowing along a
streamline comes close enough to a sand grain; gravitational sedimentation is due to the settling of the
particles when their density is higher than the density of water; and Brownian diffusion is caused by
the Brownian thermal movement that causes particles to leave a fluid streamline and come into contact
with the grain surface. The efficiency of transport by interception and gravity increases with an
increase in size of the suspended particles, whereas transport by diffusion increases with a decrease in
particle size: This is due to the molecular diffusion being inversely proportional to particle size. In
general, under physical conditions typical for water and wastewater filtration, the transport of
submicrometric particles is dominated by diffusion, whereas that of larger (non-Brownian) particles is
dominated by interception [22]. The second step, properly called attachment, is controlled by surface
interaction forces that can be described using the DerjaguineLandaueVerweyeOverbeek (DLVO)
theory. Therefore, if the conditions are favorable to deposition (e.g., the net colloidal force is
attractive), the transport step controls the rate of deposition. If the conditions are unfavorable (e.g.,
there is an energy barrier for particles to overcome before being deposited), the deposition step
controls the rate of deposition [22].

2.4.1 Forces acting on an uncharged particle
The first step of particle deposition (namely, particle transport from the bulk fluid to the vicinity of the
collector is controlled by the forces acting on the particle within the fluid).
The gravity force is the algebraic sum of two contributions: the weight of the particle and the

buoyancy force (Table 13.1). The simplest formulation for the drag force (Table 13.1) proposed holds
under general conditions. However, corrections are required when the particle size is comparable with
the average free path of fluid particles or when the particle is close to the surface of the collector. In
particular, close to the collector surface, the particle velocity differs from the fluid velocity in the same
point, and the drag force can be corrected by applying a coefficient called hydrodynamic correction
functions [87]. For freely moving particles, the following correction functions were proposed for the
force perpendicular and parallel to the collector, respectively:

f1ðHÞ¼ 19H2 þ 4H
19H2 þ 26H þ 4 (13.38)

f4ðHÞ¼ 1

1:062� 0:516 lnðHÞ (13.39)
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where H is the dimensionless distance H ¼ h/ap (being h the distance between particle and collector,
and ap the particle radius).
The hydrodynamic resistance increases in the presence of macroscopic interfaces due to the

viscous resistance to motion exerted on the fluid by the solid. During the movement toward the rigid
wall, the liquid is pushed out of the gap between particle and interface, and this phenomenon requires
more energy than the drag of the liquid near the rigid wall by the particle (parallel motion). As a
consequence, a correction to the components of particle velocity is to be applied. The correction is
significantly larger for the velocity component perpendicular to the rigid interface compared with the
one applied to the parallel component:
The Brownian force (Table 13.1) is usually modeled as a Gaussian white noise process and must be

decomposed in normal and tangential components, to take into account the hydrodynamic retardation:

FnB¼R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xnkBT

Dt

r
with xn ¼

6pmap
f1ðHÞ ; (13.40)

FtB¼R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xtkBT

Dt

r
with xt ¼

6pmap
f4ðHÞ : (13.41)

Brownian motion cannot be solved analytically, but rather as a series of uncorrelated random
movements. It is worth to mention that for a correct calculation, the time step employed in the tra-
jectory simulation must be much greater than the particle momentum relaxation time, m/x, x being the
friction coefficient and m the particle mass; moreover, the time step must be small enough to consider
all forces constant during the time step considered [49].

2.4.2 Interactions among charged bodies: DLVO and extended DLVO theory
The second step of particle deposition, namely adhesion onto the collector, is controlled by surface
interactions among collector and particles themselves. The DLVO theory defines the interaction po-
tentials between two faced, charged surfaces, which is given by the combined effects of Van der Waals
attraction and electrostatic interaction. According to the classical DLVO theory, the interaction po-
tential between two surfaces is the sum of the attractive Van der Waals interaction and the electrostatic
interaction (repulsive or attractive):

Vtot ¼VVdW þ VEDL (13.42)

where V indicates the potential energy [J]. Colloids are assumed to be uniform spheres, small relative
to the sand grains. In the following, formulas for sphereeplate interactions are reported for calculation

Table 13.1 Mathematical formulation of the forces acting on colloidal particles.

Forces Mathematical expressions

Gravity force FG ¼ 4
3pa

3
p

�
rp �r

�
g

Drag force FD ¼ 6pmapðv �uÞ
Brownian force FB ¼ R

ffiffiffiffiffiffiffiffiffiffi
2 xkbT
Dt

q
ap, particle radius; rp, particle density; r, fluid density; g, acceleration of gravity; v, fluid velocity; u, particle velocity;R, random-
normal distribution number; kB, Boltzmann constant; T, absolute temperature; x, friction coefficient; Dt, simulation time step.
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of particleecollector interactions. Particleeparticle interactions are obtained with the sphereesphere
geometry and can be shown to be half the value of sphereeplate interactions (i.e., Derjaguin’s
approximation) [22].
London-van der Waals forces are generated by spontaneous fluctuating electrical and magnetic

polarizations that give rise to an electromagnetic field in the region between the surfaces. The
magnitude of these forces depends on material properties of the particles, filter media, and solution.
Although a rigorous formulation for interatomic potentials should be based on quantum mechanics, the
Van der Waals interaction for a single-species 1:1 electrolyte is usually calculated following the
Hamaker approach [22], basing on Gregory’s formulation [29].

VVdW ¼ � Aap

6h

�
1þ 14h

l

� (13.43)

where A is the Hamaker constant [J] and l is the characteristic wavelength of the interaction, which
accounts for the retardation effect due to the finite time of propagation of the interaction [L]. The value
of 100 nm is often used for l [22]. The formulation is accurate for h < 0.1ap. For larger distances, other
formulations are available [22,45]. The Van der Waals force is obtained as FVdW ¼ �VVVdW and is
always attractive, acting along the normal to the surface.
The electrical double layer interaction is due to the partial overlapping of the diffuse double layers

that surround the facing particles or surfaces [50]. Since the charge in the double layer depends on the
charge on the particle surface, the interaction for particles of the same material is always repulsive. A
number of solutions for the calculation of VEDL are available, each valid over different ranges of
distances and under different assumptions. As a general rule, the interaction potential (or the force)
depends on the separation distance, the ionic strength, and the charge or potential at each surface.
However, analytical formulations depend on the boundary conditions applied at the surfaces. For
similarly charged surfaces, the constant charge approach (no relaxation of the electric double layer)
yields the largest repulsive force or energy barrier, whereas the constant potential approach (fully
relaxed electric double layer) yields much lower values. An intermediate solution is provided by the
regular surface interaction [79]. For most natural and synthetic colloids interacting with natural
porous media, the assumption of constant potential at the surface (CPA) proposed by Hogg et al. [33] is
adopted:

VEDL ¼ ε0εrpap
z2p þ z2c
4

"
2zpzc

z2p þ z2c
ln

 
1þ e�kh
1� e�kh

!
þ ln�1� e�2kh�# (13.44)

where zp and zc are, respectively, the particle and the collector zeta potential and k is the DebyeeHuckel
reciprocal length. The DebyeeHuckel reciprocal length k is calculated as:

k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
P
i
cn;iz

2
i

εkBT

vuut
(13.45)

where e is the electron charge (�1.602$10�19 C), cn,i is the bulk number concentration of ions of the
i-th type (tied to the ionic strength), and zi is the valence of the i-th ions. The CPA approach is valid for
zpzzc < 60 mV and kac > 5, and its accuracy decreases for small separation distances.

2. Pore-scale modeling 367



The sum of Van derWaals attraction and electrical double layer repulsion can result in a completely
attractive profile, a completely repulsive profile, or in a profile with a primary and a secondary
minimum (Fig. 13.5). When particle and sand grains are similarly charged, both Van der Waals and
electrical double layer interactions are attractive: no repulsive barrier exists and deposition takes place
under favorable conditions. Deposition in the primary minimum leads to irreversible attachment,
whereas deposition in the secondary minimum can be reversible. Even moderate changes in solution
chemistry may significantly affect the depth of the secondary minimum, thus resulting in particle
release. According to the energy barrier approach, the rate of colloid mobilization depends on the
height of the barrier in DLVO potential energy that attached colloids must exceed [72]. Electrical
interaction between colloidal particles (especially in aqueous systems) is one of the most important
influences on particle stability, aggregation, and deposition. In most cases, the only practical means of
manipulating the stability of particles and their tendency to deposit on surfaces is by changing the
electrical interaction through changes in the solution chemistry.
Beside the two interaction forces considered by the classical DLVO theory, additional interaction

forces can be considered, including:

• Born repulsion, due to short-range repulsive forces generated by the interpenetration of electron
shells, when the surfaceesurface distance significantly decreases. An estimation for Born
repulsion with an accuracy comparable with that of DLVO theory was firstly proposed by
Ruckenstein and Prieve [71]. In many real applications, when the presence of adsorbed polymer
chains on the surface of colloids is likely to occur, Born repulsion never plays a significant role, as
polymers prevent colloids to approach closer than few nanometers or fractions of the nanometer
[22].

• Steric repulsion, generated in the presence of polymeric chains attached on the solid surface. It is
due to a combination of the osmotic repulsion and the elastic repulsion generated by compression
of the brush layer (polymer chains and liquid phase) that surrounds colloidal particles, as they
approach each other. A mathematical formulation has been provided by Vincent et al. [86].

• Magnetic attraction, which is generated between surfaces with a residual magnetic saturation also
in the absence of external magnetic fields. It can be calculated following [19,28,51].

Also for these additional interactions, the hypothesis of linear superposition is usually applied [38].

FIGURE 13.5

Example of interaction energy profiles for a sand (plate)dcolloid (sphere) system: attractive (A), repulsive (B),

and repulsive with attractive secondary minimum (C).
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2.5 From pore- to macroscale: the single collector deposition efficiency
The ultimate aim of pore-scale transport models is to predict the transport and deposition of particles as
a function of suspension characteristics, physical and chemical properties of the filter, and flow
conditions. Important suspension characteristics include density, size distribution, and surface
chemistry of the particles, and temperature, viscosity, and solution chemistry of the suspending
medium. The parameters that describe the properties of packed-bed filters are bed depth, grain size,
grain shape, grain surface chemistry, and porosity. Another important parameter in packed-bed
filtration is the approach (superficial) velocity U, defined as the ratio of the volumetric flow rate to
the filter cross-section area [22].
In clean bed filtration [91], the removal of particles is represented by a single or a unit collector

removal efficiency, usually denoted as h. The single collector removal efficiency is defined as the ratio
of the overall particle deposition rate onto the collector to the convective transport of particles toward
the projected area of the collector. For an isolated spherical collector, the single collector removal
efficiency is:

h¼ I

UC0
�
pa2c
� (13.46)

where I is the overall particle deposition rate, U the average approach velocity, and C0 the average
influent particle concentration.
Numerous approaches have been proposed for the calculation of h from microscopic (fundamental)

equations. The single collector removal efficiency h can be expressed as a product of the single
collector contact efficiently h0, related to nonchemical processes, and an empirical collision efficiency
a, describing the attachment step due to DLVO interactions and other processes not included in h0:

h¼ah0 (13.47)

where h0 is calculated from microscale equations and a is determined experimentally [22,79].
The deposition of colloids in porous media has been investigated by several researchers to improve

existing methods by incorporating the forces such as hydrodynamic and attractive forces into the
governing equations [69,81,91]. Both Eulerian and Lagrangian approaches have been proposed to
derive an analytical formulation of h (or h0). The Eulerian approach, since it requires lower compu-
tational efforts, was the first approach applied in these studies. On the other hand, the Lagrangian
method, based on trajectory analysis, is more computationally demanding and has been widely applied
more recently, thanks to the increasing power of computers and sophisticated numerical software. It
was first applied to all interception phenomena except Brownian motion, due to the excessive
computational requirements [22,79], and only recent studies fully incorporated Brownian motion also
in trajectory analysis.
Early studies on the definition of h were carried out using analytical calculations. The first eval-

uation of particle deposition on a spherical collector due to Brownian diffusion was proposed by
Levich [43]. This result was then used by Yao [91], who firstly proposed a complete model to predict
particle deposition efficiency due to interception, gravity, and diffusion (respectively, hI, hG, and hD)
onto a single spherical collector in an undisturbed vertical flow with no influence of possible
surrounding collectors. The formulation of the deposition efficiency was obtained assuming that the
three mechanisms are additive, and therefore, h0 is calculated as

h0¼ hD þ hI þ hG (13.48)
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The assumption of additivity for the deposition efficiency was later on validated by Prieve [68].
The formulations proposed by Yao are

hD¼ 4:04N�2=3Pe (13.49)

hI ¼
3

2

�
ap
ac

�2
(13.50)

hG¼
2

9

�
rp � r

�
ga2p

mU
(13.51)

NPe is the Peclet number, defined as

NPe ¼ 2Uac
D

(13.52)

Yao et al. [91] observed discrepancies between their analytical results and their experimental
results due to the assumption of infinite fluid domain around the collector and due to the absence of
DLVO forces in their formulation. Pfeffer [66] applied the same approach of Yao to a Happel’s model,
i.e., considering real porosity and flow field of a packed bed, and proposed a modified diffusion term:

hD¼ 4A1=3s N�2=3Pe (13.53)

where AS is a porosity-dependent parameter accounting for the hydrodynamic effects of neighboring
collectors, defined as [22]

As¼
1
�
1� g5�

2� 3gþ 3g5 � 2g6 (13.54)

The original interception term proposed by Yao et al. [91] was later corrected by Elimelech [22] by
considering also the porosity dependency:

hI ¼
3

2
AS

�
ap
ac

�2
(13.55)

As pointed out by Messina et al. [53], the deposition term usually named “Brownian motion,”
resulting in hD, is in reality due to the mutual interaction of advection and pure diffusion and was
originally derived for Péclet numbers greater than 70. Moreover, the deposition term defined as
“interception,” hI, is due to the combination of advection (which alone does not bring to any
deposition) and the effect of the particle finite size (steric effect). The gravity deposition term, hG, is
due to the action of pure gravity on the colloidal particles. Fig. 13.6 clarifies how these three deposition
mechanisms work.
Rajagopalan and Tien [69] applied a Lagrangian approach (i.e., particle trajectory analysis) in a

Happel’s model to derive interception and gravity removal efficiencies, whereas Brownian diffusion
was treated separately by adding Pfeffer’s diffusion term [66] (Eq. 13.53). Electrical double-layer
effects were also included, leading to the final formulation of the total collector removal efficiency:

h¼ 0:72ASN
1 =

8
L0N

15 =

8
R þ 2:4$10�3ASN1:2G N�0:4R þ 4A1

=

3N�
2 =

3
Pe

S (13.56)
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where NR is the relative size group, NL0 is the London group, and NG is the gravity group:

NL0¼ A

9pma2pU
(13.57)

NR¼ ap
ac

(13.58)

NG¼
2a2pðrc � rf Þg
9mU

(13.59)

Logan et al. [46] corrected the work of Rajagopalan and Tien and made it consistent with the
efficiency definition valid for the Happel’s model:

h0¼
I

UC0ðpb2Þ (13.60)

where b is the radius of the fluid shell in the Happel’s model.
Tufenkji and Elimelech [81] developed a closed-form solution for calculating colloid deposition

efficiency on a solid grain by combining the approaches of Yao [91] and Rajagopalan and Tien [69].
They accounted for the superposition of the effects of hydrodynamic forces, Van der Waals in-
teractions, and gravity effects and proposed the following correlation equation:

h0¼ 2:4A
1 =

3
S N

�0:081
R N�0:715Pe N0:052VdW þ 0:55ASN0:125A N1:675R þ 0:22N�0:24R N1:11G N0:053VdW (13.61)

FIGURE 13.6

The three major mechanisms controlling particle deposition onto a collector: gravity, interception (i.e.,

combination of advection and steric effect), and Brownian motion (i.e., combination of advection and

Brownian diffusion).
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where NVdW is the Van derWaals number (describing the entity of the Van der Waals interaction energy
with respect to the thermal energy of the system) and NA is the attraction number (characterizing the
effects of fluid velocity and Van der Waals interaction on the particle deposition due to interception).
These two last ones are defined as

NVdW ¼ A
kBT

(13.62)

NA¼ A

12pUma2p
(13.63)

The Lagrangian approach has been successfully applied in the past years for a deeper under-
standing of colloid retention processes. Nelson and Ginn [58] applied a Lagrangian trajectory analysis
in Happel’s sphere-in-cell geometry with Stokes flow by using the concept of limiting trajectory and
considering only deterministic forces, whereas the stochastic Brownian force was added in a second
step. Their results are in good agreement with the deterministic trajectory analysis of Rajagopalan and
Tien [69] when diffusion is neglected and fit excellently the Levich solution [43] for convective
diffusion when external forces and interception are neglected. Conversely, they found that the
interaction of Brownian diffusion with sedimentation and interception has a significant effect on h,
thus suggesting that the original assumption of additive rule on h does not hold. This conclusion is
consistent with the results of Tufenkji and Elimelech [81] for large particles, whereas for
submicrometer particles, unexpected discrepancies are found.
The Lagrangian approach was also applied by several authors to elucidate the role of grain-to-grain

contacts in particle retention. Cushing and Lawler [18] used a regular packing of spheres to investigate
the mutual influence of multiple collectors and showed that contact points play a relevant role in
particle retention due to complex hydrodynamic processes, which funnel particles toward them, where
particles are stably retained. This model, however, is less sensitive to particles size than experimental
data and to the influence of surface chemical properties, likely due to the predominance of hydro-
dynamic processes at grain-to-grain contacts.
Johnson et al. [36] further elucidated the role of grain-to-grain by means of a three-dimensional

particle tracking that predicts colloid retention in porous media in the presence of an energy barrier
via two mechanisms, namely, wedging of colloids within grain-to-grain contacts and retention of
colloids (without attachment) in flow stagnation zones. Both wedging and retention in flow stagnation
zones were sensitive to colloid surface interaction forces (energy barrier height and secondary energy
minimum depth). The model provides a mechanistic basis for colloid retention in the presence of an
energy barrier via processes that were recently hypothesized to explain experimental observations.
Ma et al. [49] developed a full Lagrangian approach on all physical (drag, gravity, Brownian

motion) and chemical (DLVO) forces for particle trajectory analysis in a hemisphere-in-cell model
geometry. The flow field was solved numerically via CFD. This choice is justified by the goal of
predicting colloid deposition in the presence of energy barriers, which has been shown in previous
literature to involve deposition within grain-to-grain contacts for colloid to collector ratios greater than
approximately 0.005. A correlation equation for predicting collector efficiencies in the hemispheres-
in-cell model in the absence of energy barriers was developed via regression of numerical results to
dimensionless parameters [49]:

h¼g2
�
2:3A

1 =

3
S N

�0:08
R N0:052A N�0:65Pe þ 0:55ASN0:15A N1:8R þ 0:2N�0:10R N1:1G N

0:053
A N0:053Pe

�
(13.64)
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Song and Elimelech [76] pointed out first some limitations of the existing models for the single
collector efficiency, which predict efficiency values greater than one in some particular cases, e.g., for
very small or very large particles and/or for very low approach velocities. The authors clarified that this
unphysical result is due to the transposition of the boundary conditions from the isolated sphere
collector model to the sphere-in-cell model.
Later, Nelson and Ginn [59] proposed the following correlation equation to overcome these

limitations:

h0¼g2
"
2:4A

1=3
S

�
NPe

NPe þ 16
�0:75

N�0:68Pe N0:015Lo N
0:8
Gi þASN1=8Lo N15=8R þ 0:7NGN�0:05R

�
NGi

NGi þ 0:9
�#
(13.65)

where

NGi¼ 1

1þ NG (13.66)

and all the other parameters have been already defined.
They explained these efficiency values above unity as an overestimation of the contribution due to

diffusion and sedimentation. Their model was further refined in Nelson et al. [60].
Also Ma et al. [48] proposed a normalized correlation equation:

h0¼g2
"
8þ 4ð1� gÞA1=3S N1=3Pe
8þ ð1� gÞN0:97Pe

N0:015Lo N
0:8
Gi N

0:028
R þASN15=8Lo N

1=8
R þ 0:7N�0:05R NG

�
NGi

NGi þ 0:9
�#
(13.67)

Moreover, they explained that the existing correlation equations are valid only for Peclet number
between 70 and 104.
Messina et al. [53], by performing combined Lagrangian and Eulerian simulations and by modi-

fying the definition of single collector efficiency, proposed a new correlation equation valid for a wide
range of parameter (in particular, also for Peclet numbers less than 70). Moreover, the effect of
possible interaction between the basic transport and deposition mechanisms (i.e., advection, Brownian
deposition, gravity, and the effect of particle finite size) was analyzed, and the proposed model takes all
the possible (14) individual and combined deposition mechanisms into account. Two formulations
were proposed for the single collector efficiency, namely, a complete formulation, including all the 14
possible interaction mechanisms, and a reduced order model, including only the most important ones:

hN ¼g2
�
1:5062ASN

1:9834
R þ 7:5609N�1Pe =ð2� 2gÞ þ NG þ A0:3662S N�0:6338Pe

�
2:9352þ 2:7480N0:3737R

�þ 0:9461N0:6550G N�0:3450Pe

���
1þ 6:0098ASN1:9834R

�þg27:5609N�1Pe =ð2� 2gÞþNG þ A0:3662S N�0:6338Pe

�
2:9352þ 2:7480N0:3737R

�þ2:7972N0:6550G N�0:3450Pe

�
(13.68)

It is finally worth to mention a new trajectory simulation algorithm developed in 2010 by Wei and
Wu [88] to describe the efficiency of a single collector (pore) to catch submicrometer particles moving
through saturated porous media. A constricted-tube model incorporating the deterministic (intercep-
tion, hydrodynamic retardation, Van der Waals force, and gravitational sedimentation), stochastic
(Brownian diffusion), and thermodynamic (electrostatic and steric repulsion force) mechanisms was
established to predict nanoscale zerovalent iron particles transport and deposition by applying a
Lagrangian trajectory analytical approach. The simulation results show good agreement with the
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results predicted by existing energy barrierefree models, except for particle size lower than 100 nm at
low approach velocity. The model successfully described the breakthrough curve of polymer modified
nanoscale zerovalent iron in a benchtop soil column as well. The novel simulation scheme can be a
useful tool for predicting the behavior of the nanoscale colloidal particles moving through filter beds or
saturated soil columns under conditions with repulsion and attraction forces among surfaces.
Models and approaches presented so far all deal with the definition of the removal efficiency of a

single collector. However, for practical applications, the efficiency determined for a single grain is to
be up-scaled to the entire porous medium. Several approaches have been proposed so fare, whose
detailed description is out of the purpose of the present review. As firstly suggested by Payatakes et al.
[65], a filter/porous media can be viewed to be an assembly of identical collectors, and the decay of
concentration along the filter bed can be obtained as a combination of the removal efficiency of the
individual collectors. However, it has been demonstrated [37] that the assumption of constant removal
efficiency along the porous bed does not hold under unfavorable deposition conditions.
Even in the case of favorable deposition (i.e., attachment efficiency equal to unity), the calculation

of deposition efficiency from a pore-scale perspective is problematic. We noted earlier the issue of
neglecting the diffusive flux toward the collector, resulting in increasingly wrong predictions when
considering Peclet numbers lower than 70 [53]. In addition to that, and especially noteworthy in the
case of these diffusion-dominated regimes, lies the problem of evaluation of the actual concentration
driving force: While it is usually taken for granted that DC ¼ CN (where CN is the solute concen-
tration far away from the collector), this is not accurate when the concentration gradient itself is locally
varying in the pore-scale control volume [10]. The very common neglection of the difference between
the preasymptotic and asymptotic transport regimes also represents another source of error, this time
especially in those cases for which it takes a very long time to reach a stationary (i.e., self-similar)
solution, thus for higher Peclet numbers [54].
A challenge for the next future will be that of expending effort on further unifying work regarding

proper approaches and correlations for a rigorous up-scaling of pore-scale retention processes to the
removal efficiency of a filter bed. In this sense, the increased use of detailed pore-scale mechanistic
simulations and experimental imaging of particle transport at the pore scale [39,57] can provide a
significant step forward in the elucidation of the basic mechanisms controlling particle retention in
porous media.

Nomenclature

Symbol Parameter
Units of
measurement

A Hamaker’s constant J

ac Collector radius m

ap Particle radius m

As Porosity-dependent parameter in hD e

b Radius of fluid envelope in Happel’s model m

c Fluid-phase particle concentration mol/m3
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ci Average mass concentration in the i-th pore mol/m3

cij Average mass concentration in the i,j-th pore mol/m3

cn,i Bulk number concentration of ions of the i-th type mol/m3

C0 Influent particle concentration mol/m3

D Particle diffusion coefficient tensor m2/s

e Electron charge C

fe External body force exerted on a unit mass of the fluid N/kg

fi Hydrodynamic coefficients of delay (i ¼ 1,2, .) e

F External force vector N

FB Brownian force N

FC Conservative force N

FD Dissipative force N

FD Drag force N

FEDL Electric double layer force N

FG Gravity force N

Fij Forces acting on particle i due to particle j N

FR Random force N

Ftot Total force acting on a particle N

FVdW van der waals force N

g Acceleration of gravity m/s2

h Particleecollector distance m

H Dimensionless particleecollector distance e

I Overall particle deposition rate mol/(m2s)

k Permeability tensor m2

kB Boltzman’s constant J/K

katt Attachment rate s�1

kdet Detachment rate s�1

L0 Characteristic length m

L Network length m

m Particle mass kg

n Porosity e

NA Attraction number e

NG Gravity group e

NGi Modified gravity group e

NL0 London group e

NPe Pèclet number e
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NRe Reynolds number e

NR Relative size group e

NVdW van der waals number e

P Hydrostatic pressure N/m2ep Dimensionless hydrostatic pressure N/m2

Pi Pressure in the i-th pore N/m2

qij Volumetric discharge in the i,j-th pore throat m3/s

Q Total discharge through the network m3/s

Qi Total discharge leaving the i-th pore m3/s

r Radial coordinate m

r Position vector m

R Random-normal distribution number e

Rij Radius of the i,j-th pore throat m

S Cross-sectional area of the network perpendicular to the overall
flow direction

m2

T Absolute temperature K

u Particle velocity vector m/s

U Flow velocity m/s

U0 Characteristic flow velocity m/s

UN Uniform flow velocity entering Happel’s or Kuwabara’s cell m/s

v Fluid velocity vector m/s

v Average pore water velocity in the network m/sev Dimensionless velocity e

vf Fluid velocity component along f coordinate m/s

vr Fluid velocity components along r coordinate m/s

vq Fluid velocity components along q coordinate m/s

Vi Volume of the i-th pore m3

VEDL Electrical double-layer potential V

VVdW van der waals potential V

Vtot Total interaction potential V

zi Valence of the i-th ions e

a Attachment efficiency e

g Porosity function e

εi Permittivity of the i-th material F/m

ε0 Dielectric constant of the void F/m

εr Relative dielectric constant of the material e

zc Collector zeta potential V
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zp Particle zeta potential V

h Single collector removal efficiency e

h0 Single collector contact efficiency e

hD Single collector efficiency due to Brownian diffusion e

hG Single collector efficiency due to gravitational sedimentation e

hI Single collector efficiency due to interception e

x Friction coefficient (equal to 6pmap) Pa$s$m

q Tangential coordinate rad

k DebyeeHuckel parameter 1/m

l Average wavelength of electron oscillation m

m Fluid viscosity Pa$s

r Fluid density kg/m3

rf Fluid density kg/m3

rp Particle density kg/m3
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